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On Microwave Imagery Using Bojarski’s Identity
TAH-HSIUNG CHU, MEMBER, IEEE, AND DING-BING LIN

Abstract —In this paper, theoretical and experimental studies of mi-
crowave imagery of a perfectly conducting convex object of a size larger
than the incident wavelength are presented. Experimental data were mea-
sured in the frequency range 4-10 GHz. Calculations were done with
Bojarski’s identity, one-dimensional Fourier inversion of the range-normal-
ized scattered far field, and a back-projection algorithm. The images show
the distribution of specular reflection regions on the surface of the object.

I. INTRODUCTION

Bojarski’s identity [1], [2] forms the basis for imaging a per-
fectly conducting convex object under physical optics approxima-
tions. The identity states that the characteristic function y(r) of
the object, which is unity inside the scattering object and zero
outside, and T'(p) = 2o p~2[p(p)+ p* (— p)] make up a Fourier
transform pair where r is a position vector and p = — 2k, = pf s
with i, as the direction of the incident plane wave. The quantity
p(p)/p is the range-normalized scaftered far field measured at
all frequencies and viewing angles. However, in the case of
microwave imaging, the reconstructed image becomes the deriva-
tive (or the edge information) of the characteristic function, since
a band-pass version of I'(p) is measured [3], [4]. The image
resolution is inversely proportional to the p-space aperture (or
area of I'(p)) formed by varying frequency and viewing angle.
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Fig. 1. The scattering geometry

It is known that the far field scattered by a metallic object
subjected to coherent microwave illumination is determined by
the relative positions of scattering centers on the illuminated
portion of the object [5]. A scattering center is defined as the
object structure that is observed in the backscattered field. For a
smooth convex object of size larger than the incident wavelength,
these scattering centers are the specular reflection regions dis-
tributed on the illuminated object surface.

" The aim of this paper is to show analytically and experimen-
tally that the reconstructed image of a convex metallic object
using Bojarski’s identity gives the distribution of these specular
regions over the entire object surface.

II. THEORETICAL ANALYSIS

As a perfectly conducting convex object is illuminated with a
monochromatic plane wave propagating in the direction i,, as
shown in Fig. 1, its range-normalized backscattered far field
under physical optics approximations can be expressed as [1], [2]

ele)

(1)
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where p = —2ki, =pi;, k=2af/c, fi is the outward vector
normal to the object surface S(r), and the surface integral is over
the illuminated portion of the object. In general, this surface
integral cannot be integrated analytically. However, by adding
p(p) with p*(— p) measured with the transmitter /receiver (T/R)
unit at the other side of the object and using the divergence
theorem, one can obtain [1], {2]

2
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where y(r) is the characteristic function of the scattering object
B. defined as

I'(p) =

rinB
r notin B.
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Equation (2) is known as Bojarski’s identity [1], [2]. It shows
that an image of the scattering object B can be reconstructed
from the backscattered far field measured at all frequencies and
viewing angles through the Fourier inversion. The reconstructed
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image has a unity iitensity- inside the object according to (3),
although the incident plane wave cannot penetrate a perfectly
conducting object.

Note that in (1)

(i,-2)ds =ds; (4)

is equal to the projection of the element of surface area dS onto
the plane normal to the i, axis, and

por=pi,r=pl (5)

where / is the projection length of the illuminated object element
(or scattering center) at position r onto the z axis. Therefore, (1)
becomes

; L 08
- J L ! —jp
BT A v =3 A T

where L is the maximum projection length of the illuminated
portion of object on the zp axis; Sr =0 for /> L, and S0 =8
for /< 0 (in the shadowed region).

Equation (6) shows that, under physical optics approximations,
a line of p(p)/p data recorded from one view is proportional to
the one-dimensional Fourier transform of 4S; - /81, ie, the
derivative (or discontinuities) of the object pIOJectlon area S; [S5]

Since no discontinuities in S; were assumed at the shadow
boundary, and the object size is larger than the wavelength, the
discontinuities of the cross-sectional area occur at specular re-
gions (or scattering centers) on the illuminated surface of a
smooth convex object. Therefore a set of one-dimensional projec-
tion images of the object scattering centers can be acquired from
po(p)/p data collected by varying the frequency and viewing
angle. The range and angular resolutions are inversely propor-
tional to, respectively, the bandwidth utilized and the $pan of
viewing angle. The image of object scattering centers can be
reconstructed from these one-dimensional projection images by
using the back-projection algorithm developed in X-ray tomogra-
phy [6]. ,

However, one should note that the X-ray tomography is an
incoherent system which records the one-dimensional projections
of the X-ray absorptivity of the test object on the viewing
aperture. The described imaging system, however, is a coherent
system which records the backscattered far field of the object by
varying the frequency at each viewing angle, and one-dimen-
sional projection calculated from the Fourier inversion gives the
profile of the object discontinuities along z‘Ap axis according to (6).

The reconstructed image contains an-ensemble of regions that
represents the scattering center distribution on the illuminated
portion of the object surface, and the intensity of each scattering
center is proportional to the derivative of the projected area.
Note, in the case of a flat surface, that the image intensity is
proportional to the illuminated area. Similar results can be de-
rived using the stationary phase method [7]; however, the station-
ary phase result is only valid for the curved surface. Using a
comparison with the characteristic function y(r) defined in (3),
which is unity inside the scattering object, we see that the
reconstructed image using one-dimensional Fourier inversion and
the back-projection algorithm of p(p)/p data is different be-
cause it is represented by the distribution of scattering centers.
However, when the scattering data are recorded in the microwave
region, these two approaches will yield similar images, as dis-
cussed in the following.

From the slice-projection theorem [6], the one-dimensional
Fourier inversion of a line of I'(p) data recorded from one view

Fig. 2.
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(b)

Slices of the recorded p-space data (real part) (a) p(p)/p and (b)
T(p) of the metallic cylinder (the imaginary part data having a similar
feature).

by varying the frequency (or p) gives the projection image of the
cross-sectional area S of the object on the plane normal to the

z[, axis; i.e.,

F(p) =v/;LLlS[,~pe‘/p/ dl (7)

where — L’ is the maximum projection length of the shadow

portion of the object on the i, axis as shown in Fig. 1. In the case
of microwave imagery, the measured data lie offset from the
origin of the p space [8]. For example, in the experimental
arrangement to be discussed in the next section, the frequency is
swept from 4 GHz to 10 GHz; 1.68 rad/cm < p < 4.19 rad/cm
gives a band-pass version of I'(p). The reconstructed image from
each line of T'(p) is then equivalent to the derivative of the
projection cross-sectional area of the scattering object d.5; /8[
however, it contains specular regions on the front and back
surfaces. Therefore, as the scattering data are measured in the
microwave range over § = 360° around the object and the scatter-
ing convex object size is larger than the wavelength, the recon-
structed images from p(p)/p and T'(p) have the same features.
In the case of a partial viewing angle, an image reconstructed
from available p(p)/p gives only the scattering centers on the
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One-dimensional projection 1mages obtained from (a) o(p)/p and (b) T'(p) data at aspect angles 6 = 0° to 315° with 45°

intervals (from top to bottom). The vertical axis is the normalized intensity, and the horizontal axis is the distance in cm

illuminated surface. Experimental results obtained from the mea-
sured scattering data of a metallic cylinder will be discussed in
the next section.

III. EXPERIMENTAL RESULTS

In the measurement, a metallic cylinder with a length of 120
cm and a diameter of 11 c¢m is initially mounted in the direction
of §=45° and 20 cm off the center of a computer-controlled
positioner (8 = 0° being the direction of i.). The scattering effect
from the cylinder’s ends in negligible because the T/R unit
points to the central region of the cylinder. The entire measure-
ment sequence consists of angular positioning of the object in
increments of 1.8° over 360°, incremental frequency tuning over
4-10 GHz, and digitization and storage of the amplitude and
phase readings of the coherent receiver.

For each measurement, the sweep oscillator steps through the
frequency range linearly in 80 steps and an HP8410B network
analyzer records the cylinder backscattered field. The cylinder is
then rotated to a new aspect angle and the frequency response
measurement is repeated. Note the cylinder radius a (5.5 cm) is
such that 4.62 < ka <11.5 for the frequency band employed in
the measurement; i.e., the measurement is in the physical optics

regime, The polarization of the T/R unit is along the cylinder
axis direction.

Two slices of p(p)/p and T'(p) data, shown in Fig. 2(a) and
(b), are acquired. The p-space data are recorded in a polar format
consisting of 200 radial lines, each corresponding to a frequency
sweep and an angular range of 360° and each line containing 80
data points for a total of 16K complex values.

Shown in Fig. 3(a) and (b) are the results obtained by perform-
ing one-dimensional Fourier inversion of a line of p(p)/p and
T'(p) data at § =0° to 315° in 45° intervals. The sharp spikes
shown in Fig. 3(a) represent the specular reflection region (or the
scattering center) on the illuminated cylinder surface, which is
L =20cos(8 —45°)— 5.5 cm, where 45° is the initial angle of the
cylinder. The two-dimensional image shown in Fig. 4(a) is recon-
structed from these one-dimensional projection images.

However, the two sharp spikes shown in Fig. 3(b) are obtained
from one-dimensional Fourier inversion of I'(p) recorded from
two observations at the opposite side of the cylinder according to
(2). They represent the derivative of the projection cross-sectional
area or the projection of the cylinder front and back edges (or
specular regions). The distance between two spikes is equal to the
cylinder diameter. The first spike is at the same location as
shown in Fig. 3(a), and the second spike corresponds to the
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(b

The reconstructed microwave images from slices of (a) p(p)/p and
(b) T'( p) data measured in the frequency range 4-10 GHz.

Fig. 4.

position of the specular region when the T/R unit is at the other
side. Therefore, the I' (p) data shown in Fig. 2(b) are symmetri-
cal not only to § =45° but also to the center, whereas p(p)/p
data are symmetrical to § =45° only. However, they both yield
images with the same feature showing the cylinder profile formed
by specular regions as given in Fig. 4(a) and (b).

IV. CoONCLUSIONS

In this paper, we have discussed the microwave images of a
metallic convex object under physical optics approximations. It is
shown that the image reconstructed from Bojarski’s identity is
the “edge-enhanced” version of the object characteristic function
of the distribution of specular reflection regions. The same image
can also be reconstructed from the range-normalized scattered far
field using one-dimensional Fourier inversion and a back-
projection algorithm.
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The Input Impedance of a Hollow-Probe-Fed,
Semi-Infinite Rectangular Waveguide

JOHN M. ROLLINS anDp JOHN M. JAREM, MEMBER, IEEE

Abstract —Image theory is used to determine the input impedance of a
coaxial feed in a short-circuited, semi-infinite rectangular waveguide. The
analysis presented here is applicable to hollow antenna probes of variable
height and lends itself well to accurate numerical evaluation. The numeri-
cal results are compared to results obtained from other methods and show
the efficacy of using image theory to determine the waveguide input
impedance.

1. INTRODUCTION

A common problem in many microwave applications is the
determination of the input impedance of a coaxially fed antenna
probe in a rectangular waveguide. Several closed-form solutions
[1], [2] of varying accuracy have been developed for the case
where the waveguide is infinite in the forward and reverse direc-
tions of propagation. Considerable effort has also been expended
in achieving input-impedance expressions for the case where one
of the waveguide arms has been terminated with a short-circuit-
ing plate, resulting in a semi-infinite waveguide geometry (Fig. 1).

In determining the input impedance of an infinite waveguide,
one method, which has been pursued by Williamson [1], is the use
of image theory to develop expressions for the electric and
magnetic fields in the vicinity of the coaxial aperture. In his
analysis, Williamson assumes perfect conductivity for the wave-
guide walls and shows that the system is equivalent to an infinite
array of image sources which are treated as if they existed in free
space and contributed to the fields affecting the primary wave-
guide feed (parent source). Each source, real or image, radiates
fields which are due to a magnetic surface current in the annular
region of its aperture and an electric surface current which flows
on the surface of the probe. For the infinite waveguide shown in
Fig. 1, Williamson obtains an expression for the admittance using
a hollow probe of arbitrary height [1].

The introduction of a short circuit plate down the waveguide at
a distance u from the center of the probe results in two arrays of
probe and aperture images parallel to each other and separated
by a distance 2u. Each image is a source of radiating fields which
are felt at the coaxial aperture and ultimately affect the input
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