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On Microwave Imagery Using Bojarski’s Identity

TAH-HSIUNG CHU, MEMBER,IEEE,AND DING-BING LIN

Ab.vtr-act — In this paper, theoretical and experimental strrdles of mi-

crowave imagery of a perfectly conducting convex object of a size larger

than the incident wavelength are presented. Experimental data were mea-

sured in the frequency range 4-10 GHz. Calculations were done with

Bojarski’s identity, one-dimensionaf Fourier inversion of the range-normal-

ized scattered far field, and a back-projection algorithm. The images show

the distribution of specular reflection regions on the surface of the object.

I. INTRODUCTION

Bojarski’s identity [1], [2] forms the basis for imaging a per-

fectly conducting convex object under physicaJ optics approxima-

tions. The identity states that the characteristic function y(r) of

the object, which is unity inside the scattering object and zero

outside, and r(p) = 2~p–~[p(p)+ p*(– p)] makeup a FourierA.
transform pair where r is a position vector and p = – 2kt~ = p:P,

with ;A as the direction of the incident plane wave. The quantity

P( P )/P is the r~ge-norm~ized Scattered far field measured at
all frequencies and viewing angles. However, in the case of

microwave imaging, the reconstructed image becomes the deriva-

tive (or the edge information) of the characteristic function, since

a band-pass version of 17(p) is measured [3], [4]. The image

resolution is inversely proportional to the p-space aperture (or

area of I’(p)) formed by varying frequency and viewing angle.
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Fig. 1. The scattering geomet~

It is known that the far field scattered by a metallic object

subjected to coherent microwave illumination is determined by

the relative positions of scattering centers on the illuminated

portion of the object [5]. A scattering center is defined as the

object structure that is observed in tJm backscattered field. For a

smooth convex object of size larger than the incident wavelength,

these scattering centers are the spec vlar reflection regions dis-

tributed on the illuminated object surface.

The aim of this paper is to show analytically and experimen-

tally that the reconstructed image of a convex metallic object

using Bojarski’s identity gives the distribution of these specular

regions over the entire object surface.

II. T~ORETICAL ANALYSIS

As a perfectly conducting convex object is illuminated with a

monochromatic plane wave propagating in the direction ~A, as

shown in Fig. 1, its range-normalized backscattered far field

under physical optics approximations can be expressed as [1], [2]

P(P) =
— +J,n>hv-” ‘~~(r) (1)

P“, ”

where p = – 2kr?L = p;P, k = 2 rrf/c, h is the outward vector
normal to the object surface S(r), and the surface integral is over
the illuminated portion of the object. In general, this surface
integral cannot be integrated analyt ~cally. However, by adding
p(p) with p“( – p) measured with the transmitter/receiver (T/R)

unit at the other side of the Objecl and using the divergence

theorem, one can obtain [1], [2]

211G
r(p) =T[P(P)+P*(– P)] =fy(r)e-’c ‘d~ (2)

where y(r) is the characteristic function of the scattering object

B, defined as

{
y(r) = ::

rin B

r not in B
(3)

Equation (2) is known as Bojarski’s identity [1], [2]. It shows

that an image of the scattering obj:ct B can be reconstructed

from the backscattered far field measured at all frequencies and

viewing angles through the Fourier inversion. The reconstructed
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image has a unity ititensity inside the object according to (3),

although the incident plane wave cannot penetrate a perfectly

conducting object.

Note that in (1)

(:,,+ t)dS=d S
‘P

(4)

is equal to the projection of the element of surface area dS onto
the plane normal to the ~P axis, and

p.r=p;p.r=pl (5)

where 1 is theprojection length of the illuminated object element

(orscattering center) apposition rontothe;P axis. Therefore,(l)

becomes

where L is the maximum projection length of the illuminated

portion of object on the ;P axis; S;, = O for 1> L, and S;, = S;~~aX

for I <0 (in the shadowed region).

Equation (6) shows that, under physical optics approximations,

a line of p ( p )/p data recorded from one view is proportional to

the one-dimensional Fourier transform of 8S;, /81, i.e., the

derivative (or discontinuities) of the object projection area S;P [5].

Since no discontinuities in S;,, were assumed at the shadow

boundary, and the object size is larger than the wavelength, the

discontinuities of the cross-sectional area occur at specular re-

gions (or scattering centers) on the illuminated surface of a

smooth convex object. Therefore a set of one-dimensional projec-

tion images of the object scattering centers can be acquired from

P( P )/P data collected b vauing the frequency and viewing
angle. The range and angular resolutions are inversely propor-

tional to, respectively, the bandwidth utilized and the span of

viewing angle. The image of object scattering centers can be

reconstructed from these one-dimensional projection images by

using the back-projection algorithm developed in X-ray tomogra-

phy [6].

However, one should note that the X-ray tomography is an

incoherent system which records the one-dimensional projections

of the X-ray absorptivity of the test object on the viewing

aperture. The described imaging system, however, is a coherent

system which records the backscattered far field of the object by

varying the frequency at each viewing angle, and one-dimen-

sional projection calculated from the Fourier inversion gives the

profile of the object discontinuities along ~,, axis according to (6).

The reconstructed image contains an ensemble of regions that

represents the scattering center distribution on the illuminated

portion of the object surface, and the intensity of each scattering

center is proportional to the derivative of the projected area.

Note, in the case of a flat surface, that the image intensity is

proportional to the illuminated area. Similar results can be de-

rived using the stationary phase method [7]; however, the station-

ary phase result is only valid for the curved surface. Using a

comparison with the characteristic function y(r) defined in (3),

which is unity inside the scattering object, we see that the

reconstructed image using one-dimensional Fourier inversion and

the back-projection algorithm of p ( p )/p data is different be-

cause it is represented by the distribution of scattering centers.

However, when “the scattering data are recorded in the microwave

region, these two approaches will yield similar images, as dis-

cussed in the following.

From the slice-projection theorem [6], the one-dimensional

Fourier inversion of a line of r(p) data recorded from one view

(b)

Fig. 2. Slices of the recorded p-space data (real part) (a) p(p)/p and (b)
r(p) of the metallic cylinder (the imaginary part data having a similar

feature).

by varying the frequency (or p) gives the projection image of the

cross-sectional area S;,, of the object on the plane normaf to the
?
1~, axis; i.e.,

I’(p) ={L S;Pe-’/”dl

–L’

(7)

where – L’ is the maximum projection length of the shadow

portion of the object on the ~’ axis as shown in Fig. 1. In the case

of microwave imagery, the measured data lie offset from the
origin of the p space [8]. For example, in the experimental

arrangement to be discussed in the next section, the frequency is

swept from 4 GHz to 10 GHz; 1.68 rad/cm < p <4.19 rad/cm

gives a band-pass version of r(p). The reconstructed image from

each line of r(p) is then equivalent to the derivative of the

projection cross-sectional area of the scattering object dS;F/i31;

however, it contains specular regions on the front and back

surfaces. Therefore, as the scattering data are measured in the

microwave range over 8 = 360° around the object and the scatter-

ing convex object size is larger than the wavelength, the recon-

structed images from p ( p )/p and f7( p ) have the same features.

In the case of a partial viewing angle, an image reconstructed

from available p ( p )/p gives only the scattering centers on the
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Fig 3. One-dlmensiomd projection Images obtained from (a) P ( P )/p and (b) r(P) data at aspect angles @= [1” to 315° with 450

intervals (from top to bottom). The vertical axis is the normalized intensity, and the horizontal axis is the distance in cm

illuminated surface, Experimental results obtained from the mea-
sured scattering data of a metallic cylinder will be discussed in
the next section.

III. EXPERIMENTALRESULTS

In the measurement, a metallic cylinder with a length of 120
cm and a diameter of 11 cm is initially mounted in the direction
of O= 45° and 20 cm off the center of a computer-controlled
positioner (O = 0° being the direction of ;~). The scattering effect
from the cylinder’s ends in negligible because the T/R unit
points to the central region of the cylinder. The entire measure-
ment sequence consists of angular positioning of the object in
increments of 1.8° over 360°, incremental frequency tuning over
4– 10 GHz, and digitization and storage of the amplitude and

phase readings of the coherent receiver.
For each measurement, the sweep oscillator steps through the

frequency range linearly in 80 steps and an HP841OB network
analyzer records the cylinder backscattered field. The cylinder is
then rotated to a new aspect angle and the frequency response
measurement is repeated. Note the cylinder radius a (5.5 cm) is
such that 4.62< ka <11.5 for the frequency band employed in
the measurement; i.e., the measurement is in the physicaf optics

regime, The polarization of the T/R unit is along the cylinder
axis direction.

Two slices of p(p )/p and 17(p) data, shown in Fig. 2(a) and
(b), are acquired. The p-space data are recorded in a polar format
consisting of 200 radial lines, each corresponding to a frequency

sweep and an angular range of 360° and each line containing 80
data points for a total of 16K complex values.

Shown in Fig. 3(a) and (b) are the results obtained by perform-
ing one-dimensional Fourier inversion of a line of p( p )/p and

17(p) data at @= 0° to 315° in 45° intervals. The sharp spikes
shown in Fig. 3(a) represent the specular reflection region (or the
scattering center) on the illuminated cylinder surface, which is
L = 20cos(0 – 45°) – 5.5 cm, where 45° is the initial angle of the

cylinder. The two-dimensional image shown in Fig. 4(a) is recon-

structed from these one-dimensional projection images.

However, the two sharp spikes shown in Fig. 3(b) are obtained

from one-dimensional Fourier inversion of r(p) recorded from

two observations at the opposite side of the cylinder according to

(2). They represent the derivative of the projection cross-sectional

area or the projection of the cylinder front and back edges (or

specular regions). The distance between two spikes is equal to the

cylinder diameter. The first spike is at the same location as

shown in Fig. 3(a), and the second spike corresponds to the
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(b)

Fig. 4. The reconstructed microwave images from slices of (a) P( p )/p and

(b) r(p) data measured in the frequency range 4-10 GHz.

position of the specular region when the T/R unit is at the other

side. Therefore, the r (p) data shown in Fig. 2(b) are symmetri-

cal not only to d = 450 but also to the center, whereas p ( p )/p

data are symmetrical to 6’= 45° only. However, they both yield
images with the same feature showing the cylinder profile formed
by specular regions as given in Fig. 4(a) and (b).

IV. CONCLUSIONS

In this paper, we have discussed the microwave images of a

metallic convex object under physical optics approximations. It is

shown that the image reconstructed from Boj arski’s identity is

the “edge-enhanced” version of the object characteristic function

of the distribution of specular reflection regions. The same image

can also be reconstructed from the range-normalized scattered far

field using one-dimensional Fourier inversion and a back-

projection algorithm.
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The Input Impedance of a Hollow-Probe-Fed,

Semi-Infinite Rectangular Waveguide

JOHN M. ROLLINS AND JOHN M. JAREM, MEMBER, IEEE

Abstract — Image theory is used to determine the input impedance of a

coaxial feed in a short-circuited, semi-infinite rectangular waveguide. The

analysis presented here is applicable to hollow antenna probes of variable

height and lends itself well to accurate numerical evaluation. Tfre nnmeri-

cal resnlts are compared to results obtained from other methods and show

the efficacy of rising image theory to determine the waveguide input

impedance.

1. INTRODUCTION

A common problem in many microwave applications is the

determination of the input impedance of a coaxially fed antenna

probe in a rectangular waveguide. Severaf closed-form solutions

[1], [2] of varying accuracy have been developed for the case

where the waveguide is infinite in the forward and reverse direc-

tions of propagation. Considerable effort has also been expended

in achieving input-impedance expressions for the case where one

of the waveguide arms has been terminated with a short-circuit-

ing plate, resulting in a semi-infinite waveguide geometry (Fig. 1).

In determining the input impedance of an infinite waveguide,

one method, which has been pursued by Williamson [1], is the use

of image theory to develop expressions for the electric and

magnetic fields in the vicinity of the coaxial aperture. In his

analysis, Williamson assumes perfect conductivity for the wave-

guide walls and shows that the system is equivalent to an infinite

array of image sources which are treated as if they existed in free

space and contributed to the fields affecting the primary wave-

guide feed (parent source). Each source, real or image, radiates

fields which are due to a magnetic surface current in the annular

region of its aperture and an electric surface current which flows

on the surface of the probe. For the infinite waveguide shown in

Fig. 1, Williamson obtains an expression for the admittance using

a hollow probe of arbitrary height [1].

The introduction of a short circuit plate down the waveguide at

a distance u from the center of the probe results in two arrays of

probe and aperture images parallel to each other and separated

by a distance 2 u. Each image is a source of radiating fields which

are felt at the coaxiaJ aperture and ultimately affect the input
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